WORKFORCE DEVELOPMENT AUTHORITY

P.O. BOX 2707 Kigali, Rwanda Tel: (+250) 255113365

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2014 TECHNICAL AND PROFESSIONAL TRADES

EXAM TITLE: ELT - Electrical Technology
 OPTION: ELECTRICITY (ELC)
 DURATION: 3hours

INSTRUCTIONS:

The paper is composed of three (3) main Sections:
Section I: Fifteen (15) questions, all Compulsory. 55marks

Section II: Five (5) questions, Choose any Three (3). 30marks

Section III: Three (3) questions, Choose any One (1). 15marks

SECTION I. FIFTEEN (15) COMPULSORY QUESTIONS.

1. Give three (3) reasons why alternating current (a.c) is used in the generation transmission of electronic power.
2. When does an electrical shock occur?
3. An alternating voltage (a.v) is given by $12 \sin 50$ Calculate the r.m.s and draw the wave form.

6marks
|04. Draw a line diagram of a manual switch with overload protection and a float switch controlling a pump motor for "pump" operation.
05. For an R-L series a.c circuit, draw:
(a) a circuit diagram
(b) phasor diagram
(c) voltage diagram

4marks

4marks
06. A 6 V battery is connected in series with $20 \Omega, 15 \Omega$ and 25Ω resistors.

Find the voltage flowing in each resistor
2marks
07. Define the following expressions:
a) A motor starter.
b) A contactor.
08. Differentiate conductors from insulators.

09. Draw a well labeled circuit diagram for an inverting amplifier.

4marks
4marks
10. What are the three different types of magnetic contactors?

6marks
3marks
11. A current through a coil increases from 20A to 60A in 0.05 seconds and an e.m.f (e) of 30 V is induced. Find the inductance of the coil.

3marks
12. Where can a differential compound d.c motor be used?
13. A factory has a $240-\mathrm{V}$ supply from which the following loads are taken :

Lighting: Three hundred 150-W lamps, four hundred 100 W lamps and five hundred 60-W lamps

Heating: 100 kW
Motors: A total of 44.76 kW with an average efficiency of 75 percent

Misc. : Various load taking a current of 40 A.
Assuming that the lightingload is on for a period of 7 hours/day, the heating for 16 hours per day and the remainder for 3hours/day, calculate the weekiy consumption of the factory in kWh when working on a 7 -day week.

5marks
|14. According to the way the primary and the secondary windings are placed around the core, explain the types of transformers.

3marks
15. Mention three (3) things that you can do as technician to maintain tools and electrical equipments in good conditions.

SECTION II. ATTEMPT ANY THREE (3) QUESTIONS.

16. A coil of resistance 8 and inductance 140 mH in series with a 150 capacitor is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.

Calculate:

(a) the current flowing
(b) the phase difference between the supply voltage and current;
(c) the voltage across the coil
(d) the voltage across the capacitor

10marks
17. Using sketches show how a field rheostat or armature rheøstat could be used to adjust the speed of a dc shunt motor.

10marks
18. (a) With the aid of a labeled circuit diagram, explain how an earth electrode is installed
(b) Give and explain any two (2) applications of earthing.

6marks
4marks
19. a) Classify $A C$ motors according to their principle of operation.
b) Describe a d.c generator.

5marks
20. Use Kirchhoff's law to determine the currents flowing in each branch of the network shown in figure 1 below:

10marks

SECTION III. ATTEMPT ANY ONE (1) QUESTION.

21. a) Make classification of all losses which take place in a DC generator.
b) A 4-pole, Lap-connected d.c. machine has an armature resistance of 0.15 ohm . What will be the armature resistance of the machine if it is rewound for wave-connection? Justify by connections diagrams.
22. Two battries, each of e.m.f 10 V and internal resistance 0.5Ω are connected in:
(i) series; (ii) parallel to supply a load which has a resistance of 4Ω.
(a) make circuit diagrams of these circuit connections.
(b) calculate the current and voltage across the load in each case.
23. Draw and explain the autotransformer starting circuits.
